MATH 54-HINTS TO HOMEWORK 2

PEYAM TABRIZIAN

Here are a couple of hints to Homework 2! Enjoy :)

SECTION 1.7: LINEAR INDEPENDENCE

1.7.1. The easiest way to do this is to form the matrix whose columns are the given vectors and see if there is a pivot in each row!
1.7.3. Notice the second vector is -3 times the first vector!
1.7.15, 1.7.17. A set with more than 2 elements in \mathbb{R}^{2} is always linearly dependent. A set with the zero-vector is always linearly dependent.
1.7.21.
(a) \mathbf{F} (the equation $A \mathbf{x}=\mathbf{0}$ always has the trivial solution, no matter what the columns of A look like!)
(b) \mathbf{F} (for example, $S=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right]\right\}$ doesn't satisfy this! The correct statement should be: there is some vector such that \cdots)
(c) \mathbf{T} (in other words, 5 vectors in \mathbb{R}^{4} are linearly dependent)
(d) \mathbf{T} (otherwise the set would be linearly independent)
1.7.33, 1.7.34, 1.7.37. Remember that a set is linearly dependent if there's a relationship between the vectors in the set. Also, a set with the zero vector is always linearly dependent.
1.7.36. False (choose $\mathbf{v}_{\mathbf{1}}=\mathbf{v}_{\mathbf{2}}=\mathbf{v}_{\mathbf{4}}$ and $\mathbf{v}_{\mathbf{3}}$ linearly independent from $\mathbf{v}_{\mathbf{1}}$! The point is for linear independence, you have to consider the set as a whole!)

1.7.37. True

SEction 2.1: Matrix operations

2.1.7. Remember the rule $(m \times n) \bullet(n \times p)=(m \times p)$.
2.1.9. Write out $A B$ and $B A$ and solve for k in $A B=B A$.
2.1.13. $\left[Q \mathbf{r}_{1} \cdots Q \mathbf{r}_{\mathbf{p}}\right]=Q\left[\mathbf{r}_{\mathbf{1}} \cdots \mathbf{r}_{\mathbf{p}}\right]$. Think of this in terms of how you multiply matrices! Remember this for later on, it will be useful!

[^0]2.1.15.
(a) \mathbf{F} (oh, life would be awesome if this was true! But $\mathbf{a}_{1} \mathbf{a}_{\mathbf{2}}$ doesn't even make sense!)
(b) \mathbf{F} (the columns of \mathbf{A} using weights from the column of \mathbf{B})
(c) \mathbf{T}
(d) \mathbf{T}
(e) \mathbf{F} (in the reverse order, $(A B)^{T}=B^{T} A^{T}$)
2.1.16.
(a) \mathbf{F} (that doesn't even make sense because $A B$ has to be a 3×3 matrix! The + shouldn't be there!)
(b) \mathbf{F} (column, not row)
(c) \mathbf{F} (in general $B C \neq C B$)
(d) \mathbf{F} (it's $B^{T} A^{T}$)
(e) \mathbf{T} (that's just a lengthy way of saying $\left.(A+B)^{T}=A^{T}+B^{T}\right)$
2.1.23. Multiply the equation $A \mathrm{x}=\mathbf{0}$ by C.
2.1.25. On the one hand, $C A D=(C A) D=I D=D$, on the other hand $C A D=$ $C(A D)=C I=C$, hence $C=D$

SECTION 2.2: THE INVERSE OF A MATRIX

2.2.1. Use theorem 4.
2.2.5. Use the fact that if A is invertible, and $A \mathbf{x}=\mathbf{b}$, then $\mathbf{x}=A^{-1} \mathbf{b}$.
2.2.9. All statements are true, except for (b), because $(A B)^{-1}=B^{-1} A^{-1}$.
2.2.10.
(a) \mathbf{F} (reverse order, $\left.(A B)^{-1}=B^{-1} A^{-1}\right)$
(b) $\mathbf{T}\left(\left(A^{-1}\right)^{-1}=A\right)$
(c) \mathbf{T} (because then $a d-b c=0$)
(d) \mathbf{T} (this follows from the Invertible Matrix Theorem, see next section)
(e) \mathbf{F} (reduce I to A^{-1})
2.2.13. Muliply the equation $A B=A C$ on the left by A^{-1}. Not true in general, consider for example A to be $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ and B and C any two matrices!
2.2.18. $B=P^{-1} A P$

SECTION 2.3: CHARACTERIZATIONS OF INVERTIBLE MATRICES

2.3.3, 2.3.5. Row-reduction is the key!
2.3.11, 2.3.12, 2.3.18, 2.3.22, 2.3.24. Just look at theorem 8! If one of those statements holds, then all of them hold!

[^0]: Date: Tuesday, June 26th, 2012.

